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Abstract— The detection and tracking of small targets on the
ocean surface is a challenging problem due to low signal-to-
clutter ratio (SCR) that results from low grazing angles and
high sea state. Recent advances in sensing technologies have
enabled waveform-agile schemes that tailor the sensor waveform
to match the overall sensing objective. In this paper, we propose
a methodology to dynamically adapt the transmitted waveform
to improve the tracking performance for scenarios characterized
by heavy sea clutter. Employing the compound-Gaussian model
for sea clutter, we develop an algorithm for online design of a
phase-modulated waveform that improves the SCR in a range
bin of interest. A particle filter tracker uses the measurements
obtained by this waveform to estimate the target state. We present
a simulation study to demonstrate that our scheme leads to
improved tracking performance.

I. INTRODUCTION

Waveform diversity is fast becoming one of the most im-
portant methods by which sensing systems can be dynamically
adapted to their environment and task to achieve performance
gains over non-adaptive systems. With recent advances in
sensor hardware, this adaptation can involve the changing
of the transmitted waveform ‘on-the-fly’ so as to obtain
information that optimally contributes to back-end sensing
algorithms such as trackers and detectors. The benefits of such
adaptation include improved performance and reduced sensor
usage leading to greater system efficiency. Waveform-agile
sensing has recently received wide attention with a number
of investigations for target tracking [1]-[3], detection [4]-[6],
and classification [7], [8], reported in the literature.

Most investigations of waveform-agile tracking have fo-
cused on the exploitation of the delay and Doppler resolution
properties of transmitted waveforms to estimate the range
and velocity of a target in accordance with the dynamically
changing uncertainty of the tracker [1]-[3], [9]. Here, the
impact of a particular waveform on the measurement errors
was quantified by the Cramér-Rao lower bound (CRLB),
which is derived from the curvature of the waveform ambiguity
function at the origin in the delay-Doppler plane [10]. Since
this characterization ignores the sidelobes of the ambiguity
function, it does not seem appropriate in situations involving
low signal-to-noise ratio (SNR) or low SCR.

Furthermore, recent work on dynamic waveform adaptation
for target tracking has often assumed perfect detection [1],
or simplistic clutter models [3], [9], [11]. While this may
be appropriate when the SNR is high, neither assumption
is justified in scenarios that involve heavy sea clutter. Early
investigations [12] of the design of waveforms for clutter

rejection assumed Gaussian models for sea clutter echoes.
Such models are now known to be inadequate due to the higher
spatial resolution offered by modern radars. As a result, the
compound-Gaussian model for sea clutter has gained wide
acceptance [13], [14]. Although there has been extensive
research in the development of detection strategies for targets
in non-Gaussian sea clutter [15], very few applications of
dynamic waveform-adaptation to improve target tracking
performance in the presence of non-Gaussian interference have
been reported to date.

In this paper, we approach the challenging problem of
tracking a small target in heavy sea clutter with the premise
that improved detection performance also leads to improved
tracking performance. This is due to the fact that, for
a given probability of detection, a lower probability of
false alarm implies less uncertainty in the origin of the
measurement which leads to lower tracking error [16]. Using a
previously developed procedure for dynamic waveform design
for detecting targets in low SCRs [6], we develop a particle
filter based tracker that uses the measurements obtained by the
adapted waveform. A simulation study based on parameters
derived from real sea clutter measurements demonstrates that
our approach provides significant reduction in the tracking root
mean square error (RMSE) when compared to a non-adaptive
system.

The paper is organized as follows. In Section II, we describe
the models for the target dynamics, clutter, and observations.
Section III discusses the dynamic waveform design algorithm
and the estimation of clutter statistics. In Section IV, we
present the target tracker in detail, while in Section V, we
provide the results of a simulation study.

II. TARGET, SIGNAL, AND CLUTTER MODELS

Let Xy = [ri 7]7 define the state of a target at time F,
where 7, and 7, are the range and radial velocity, respectively,
with respect to a fixed radar. We assume a linear dynamics
model for the target motion so that

X = FXp-1+ Wy, (D
where W, is a zero-mean, white Gaussian noise sequence
with covariance matrix (). The constant matrices F' in (1) and
@ are given by
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respectively, where AT is the interval between two observa-
tions and ¢ is a constant.

A. Received Signal Model

We consider a medium pulse repetition frequency (PRF)
radar that transmits a burst of 2L pulses in each dwell in
an area or direction of interest as shown in Fig. 1. Each
dwell consists of two sub-dwells, Sub-dwells 1 and 2, during
which L identical pulses of the waveforms s;(¢) and so(t)
are transmitted, respectively. At the end of Sub-dwell 2, a
measurement is provided to the target tracker. While s;(t) is
a fixed waveform, so(t) is dynamically designed to improve
the SCR at a predicted target location, thus improving the
tracking performance.

With s(t) denoting either s (t) or s2(t), the received signal
at the I/th pulse, I =0,1,..., L — 1, in each sub-dwell, is

g =
+ Z ahs(t — ) exp(j2nvit) + n(t), ()

(3

bls(t — 10) exp(j271pot)

where b, 7y and vy are the complex reflectivity, delay and
Doppler shift, respectively, of the target (if present), a:é, T
and v; are the complex reflectivity, delay and Doppler shift
of the ith clutter scatterer, respectively, and n(t) is additive
noise. In (2), we have assumed that the delay and Doppler
shift of each scatterer remains constant across the duration
of the Sub-dwell, which is reasonable if the PRF is high
(in the order of 10 kHz). Note that we make no assumption
on the values of the target or clutter Doppler shift so that
discrimination of the target based on Doppler differences alone
is not possible. We will henceforth assume a high clutter-to-
noise ratio so that the clutter is the dominant component and
additive noise is negligible. Since we only consider transmitted
signals of very short duration, the Doppler resolution is very
poor. Therefore, we completely ignore Doppler processing and
restrict our attention to delay or range estimation alone.

The received signal in (2) is sampled at a rate fs to yield
the sequence g'[n] = g'(n/fs), which upon matched filtering
yields the sequence y'[n]. We define

oGy "

as the vector of matched-filter outputs at delay or range bin
7, so that

yi=1y

N-1
y;i = ng[] — no] + Z Zs [n] Xj4n, (3)
n=—(N-1)
where
b = [0, b 1T,
X; = [x?,x%, e xffl]T,

ng is the range bin that contains the target, and z;[m| =
Zg;ol s[n]s*[n—m], |m| < N is the autocorrelation function
of s[n] =s(n/fs),n=0,...,N —1.

| st |
£
g T i o n o ninn
il -] 1001
: ko k41 dwell #
\*\Waveform adapt&ibb Tracker update
g .
g 0 1 2 L-1]0 1 2 L-1
al ] |
1 2 sub—dwell #
Fig. 1.  Pulse diagram of the proposed adaptation algorithm. The pulse

amplitudes are for illustrative purposes only.

B. Clutter and Target Models

Early investigations of waveform design for sea clutter
rejection typically assumed a Gaussian model for the echoes
[12]. As the spatial resolution of radars improved, however,
this model could not account for the increased occurrence
of higher amplitudes or spikes. As a result, a compound-
Gaussian model for sea clutter has gained wide acceptance
[14] and has received theoretical and empirical support. This
model postulates that sea clutter returns are the result of
two components: a speckle-like return that arises due to a
large number of independent scattering centers reflecting the
incident beam, and a texture caused by large-scale swell
structures that modulates the local mean power of the speckle
return. Given the texture and speckle covariance, the complex
reflectivity of the ith clutter scatterer is a circular complex
zero-mean Gaussian random vector [15] or x; ~ CN (0, 7;X),
where 7; > 0 is the texture, and 3 € CE*L is the speckle
covariance matrix. The speckle remains correlated over a
short interval (~10 ms) while the texture exhibits longer
decorrelation time (~50 s) [17]. Thus at the PRF we consider,
3 # I is non-white, where I, is the L x L identity matrix. We
will assume that the texture remains constant during a dwell,
i.e. over a duration of 2-3 ms. We also assume a Swerling I
target [18], so that b ~ CN(0,0211). From (3) it follows that

y; ~ CN(0,0%Ik|z[j — nol” + 28;),

where the scalar
N

>

-1
Tjtnl2s [n]|2
n=—(N-1)

B; =

is a function of the waveform due to its dependence on z[n].

C. Observations Model

At the end of Sub-dwell 2 of the kth dwell, the measurement
provided to the tracker is

T
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where 7 is the range bin corresponding to the predicted target
range, n, = (Vi —1)/2, where Vj, is the number of range bins
in the validation gate at time step k [16], while y” denotes
the transpose of y. Since the observations of target range are
quantized to range bins, we will assume that the actual target
range is uniformly distributed across the length of the range
bin.

III. DYNAMIC WAVEFORM DESIGN

From (3), we can see that the matched-filter output is
a convolution of the radar scene with the autocorrelation
function of the transmitted signal. This results in a waveform-
dependent smearing of energy from one range bin to another.
Clearly, the impact of the ‘out-of-bin’ clutter is to reduce the
SCR in a particular range bin. Our objective is to improve
the SCR in Sub-dwell 2 in range bin ng, where the target has
been predicted. To this end, we seek to design sa[n| so that
its autocorrelation function zg,[m] is small where the clutter
is strong, thus minimizing the effect of out-of-bin clutter in
the predicted target location. To achieve this, we first require
estimates of the clutter power or texture in the bins whose
scatterers contribute to the return yp,.

A. Estimation of Clutter Statistics

Although, the texture is a random process, the assumption
that it is practically constant across a dwell permits us to treat
its realizations in each range bin as deterministic but unknown
variates. Accordingly, suppose that we wish to estimate

O = {Thy—2(N-1);---

From (3), we see that there is a many-to-one linear mapping
between the scatterer reflectivities and the matched-filtered
output vectors which precludes the exact determination of ©.
Therefore, we instead seek its maximum-likelihood estimate
(MLE) that maximizes p(y; ©), where

77;107" '77;10+2(N71)52}'
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To find this MLE however, we must perform a complicated
multi-dimensional search since the elements of y are strongly
correlated. Instead, we use the expectation-maximization (EM)
[19] algorithm to find © that maximizes p(x; ©), where

]T

— [T T T
X = [Xﬁ072(N71)’ e )Xﬁ07 e 7X7hl0+2(N71)

is the unobserved or complete data vector. Starting with an
initial guess ©(*), the EM algorithm iterates

U(®,0™)
Ot

E{lnp(x; ©)|y, 0}, “
arg max U(©,6M), Q)

until the change in © falls below a set threshold. Note
that x is complex Gaussian distributed and its elements are
independent, given the texture and speckle covariance matrix.
Together with the fact that y and x are related through a linear
transformation, this simplifies the computations in (4) and (5).

B. Phase modulated waveform design

After estimation of ©, as described in Section III-A, let
us assume that we have formed the (possibly disconnected)
set Z, of range bin indices in the N — 1 neighborhood of
N, where the clutter power is large. For example, this could
consist of the Ny < 2(N — 1) largest values of the estimated
texture [,fﬁo—(N—l)’ - .,7},0+(N_1)] excluding ’fﬁo itself, as
it corresponds to the predicted target location. In order to
minimize the out-of-bin clutter contribution to y;, in Sub-
dwell 2, we seek to minimize ), |z, [m]|2.

To achieve this, we choose a unimodular phase-modulated
waveform [20],

52[71] = exp(j)\n)vn = 07]-;' "aN_ ]-a

as a template, and seek to minimize the cost function

TA) =D |z, [m]?, (©6)

Z,

where A = [\, A1,...,An_1]7. Note that the least squares
minimization in (6) is a simplified form of a method that may
be used to design a waveform with an arbitrary autocorrelation
function. Further, if the minimization is carried out over the
time and frequency plane, the same approach can be used to
design a waveform with a specified ambiguity function.

It is relatively straightforward to obtain z,,[m] [3]. The
minimization of J(A) in (6) can then be easily accomplished
using the Newton-Raphson method.

IV. TARGET TRACKING

The target tracker estimates the posterior probability density
function p(Xy|Y1.x) of the target state at dwell k given the
observations upto and including dwell &k [16]. Although the
observation Y, provides a measurement of the range of the
target, note that it is accompanied by noise that is uniformly
distributed across the extent of the range bin. Therefore,
despite the fact that the observations model is a linear function
of the target state, we cannot use the Kalman filter as the target
tracker. Thus, we use the particle filter [21] which estimates
the posterior density as a collection of [N, samples or particles
Xi,i=1,2,...,N,, and their corresponding weights w}. At
each dwell, the density is predicted forward in accordance
with the target dynamics model and updated according to the
likelihood function.

When targets are to be tracked in the presence of clutter,
probabilistic data association is often used to counter the
uncertainty in the origin of the measurements [16]. In this
approach, the likelihood function is usually computed as the
average

p(Yk|X2) = ZP(YHX}Q Qi )p(Qn),

where (),,, is an association hypothesis. In our case, however,
due to the availability of estimates of the clutter and target
statistics in each range bin, we are able to directly compute
the likelihood functions p(Y|X%).
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Fig. 2. Magnitude autocorrelation function for a linear frequency modulated
(LFM) chirp and the designed phase-modulated waveform. The range bins
with strong clutter are marked with asterisks.

For this purpose, let nj, denote the range bin that contains
the range corresponding to X} . With

Zsy = [2s,[— (N = D)], ..., 25,[0], ..., 25, [V — 1]]T,
let
Zs, 0 0
0 Zs, 0 0
H= . . ® 1
0 0 Zg,

where ® indicates the Kronecker product. Furthermore, let

diag[Tag—nys - - -

diag[vig—n, .-

T =
V:

7,j—floa"'7j}bo+nk]®27

<y Ungy - - -7Uﬁo+nv] ®HL5

where ny, = n, + (N — 1), v; = 636[j — nf), d[] is the
Kronecker delta, and &]2- is the MLE of o2, given that the
target is in range bin j. The covariance matrix of Yy, given

X7, is then given by
3, =H(T 4+ V).

From (3), Y is a zero-mean, complex Gaqssian vector and
hence the weight w}, o< p(Y|XL%) = CN(0,%;) can be easily
computed.

V. SIMULATIONS

In our simulation study, a target is tracked as it moves in
the presence of simulated heavy sea clutter. At the start of
each tracking sequence of 25 dwells, the target is located at
a distance of 10 km from the sensor and moves away from
it at a near constant velocity of 5 m/s. The clutter scatterers
are distributed uniformly in range across the range cells, and
uniformly in Doppler over [-1,000, 1,000] Hz. The clutter
reflectivity is sampled from a K-distribution with the necessary
speckle and texture temporal correlations derived from real
sea clutter data as in [3], [17]. The particles at the start of
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Fig. 3. Comparison of averaged position RMSE at the end of Sub-dwell

1 (dotted lines) and Sub-dwell 2 (solid lines) using the designed waveform.
The numbers on the curves indicate SCR in dB.

each tracking sequence are drawn from p(Xo) = CN (Xo, Py),
where Py = diag[1, 000 10].

The waveform s;[n] was chosen to be a linear frequency
modulated (LFM) chirp of duration 1.5 us and a frequency
sweep of 100 MHz. We used L = 10 pulses in each sub-
dwell, a pulse repetition interval (PRI) of 100 us, and a tracker
update interval of AT = 1 s. The amplitude of the target
return was sampled from a zero-mean, complex Gaussian
process with covariance matrix 021}, where o2 was chosen
to satisfy specified values of SCR. We define the SCR to
be the ratio of the target signal power to the fotal power
of the clutter in the range bin containing the target. As a
measure of the algorithm’s performance, we present averaged
position RMSE plots conditioned on convergence, where a
run was said to have converged if the true target was always
located within the validation gate [16]. The plots are compared
with the corresponding performance obtained when the fixed
LFM chirp waveform alone is transmitted in each dwell, thus
representing a non-adaptive system.

In Fig. 2, we compare the magnitude of a typical phase-
modulated waveform, designed as described in Section III
with that of the LFM chirp transmitted in Sub-dwell 1.
The range bins in which the clutter was estimated to be
strong, or the elements of the set Z, in (6), are marked by
asterisks. It can be observed that in these range bins, the
magnitude autocorrelation function is upto 30 dB below the
corresponding level for the LFM chirp.

Fig. 3 shows a comparison of the averaged position RMSE
obtained at the end of Sub-dwells 1 and 2, corresponding to
the transmission of the fixed LFM chirp, and the dynamically
designed waveform. We observe that the RMSE is lower when
the dynamically designed waveform is used thus indicating a
performance improvement of more than 20 dB SCR for the
same RMSE.



VI. CONCLUSIONS

In this paper we presented a waveform-adaptive tracking al-
gorithm that reduces tracking error by improving the detection
performance. Using a two-step approach, we first estimate the
clutter statistics within the validation gate and then use these
estimates to design a phase-modulated waveform for the next
transmission. The second waveform helps to improve the SCR
in the target location and thus improve detection performance.
Since a reduction in the number of false alarms directly
reduces uncertainty in the origin of the measurement, the
tracking performance improves considerably, as demonstrated
in a simulation study. Note that tracking performance can be
further improved by adapting the waveform to the dynamic
demands of the tracker in addition to the estimates of the
environment. This would permit tradeoffs in the delay and
Doppler resolution properties of each waveform in addition to
their ability to mitigate sea clutter.
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